首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11736篇
  免费   1704篇
  国内免费   1396篇
化学   7936篇
晶体学   143篇
力学   852篇
综合类   97篇
数学   1431篇
物理学   4377篇
  2023年   169篇
  2022年   179篇
  2021年   268篇
  2020年   390篇
  2019年   346篇
  2018年   308篇
  2017年   296篇
  2016年   452篇
  2015年   432篇
  2014年   563篇
  2013年   806篇
  2012年   889篇
  2011年   970篇
  2010年   654篇
  2009年   719篇
  2008年   753篇
  2007年   725篇
  2006年   683篇
  2005年   629篇
  2004年   494篇
  2003年   383篇
  2002年   320篇
  2001年   309篇
  2000年   275篇
  1999年   304篇
  1998年   314篇
  1997年   253篇
  1996年   255篇
  1995年   224篇
  1994年   239篇
  1993年   158篇
  1992年   150篇
  1991年   130篇
  1990年   138篇
  1989年   84篇
  1988年   78篇
  1987年   88篇
  1986年   82篇
  1985年   71篇
  1984年   48篇
  1983年   33篇
  1982年   35篇
  1981年   26篇
  1980年   20篇
  1979年   15篇
  1978年   14篇
  1977年   8篇
  1976年   8篇
  1973年   10篇
  1970年   7篇
排序方式: 共有10000条查询结果,搜索用时 20 毫秒
91.
Allylamines are important building blocks in the synthesis of bioactive compounds. The direct coupling of allylic C−H bonds and commonly available amines is a major synthetic challenge. An allylic C−H amination of 1,4-dienes has been accomplished by palladium catalysis. With aromatic amines, branch-selective allylic aminations are favored to generate thermodynamically unstable Z-allylamines. In addition, more basic aliphatic cyclic amines can also engage in the reaction, but linear dienyl allylic amines are the major products.  相似文献   
92.
Mimicking the bioactivity of native enzymes through synthetic chemistry is an efficient means to advance the biocatalysts in a cell-free environment, however, remains long-standing challenges. Herein, we utilize structurally explicit hydrogen-bonded organic frameworks (HOFs) to mimic photo-responsive oxidase, and uncover the important role of pore environments on mediating oxidase-like activity by means of constructing isostructural HOFs. We discover that the HOF pore with suitable geometry can stabilize and spatially organize the catalytic substrate into a favorable catalytic route, as with the function of the native enzyme pocket. Based on the desirable photo-responsive oxidase-like activity, a visual and sensitive HOFs biosensor is established for the detection of phosphatase, an important biomarker of skeletal and hepatobiliary diseases. This work demonstrates that the pore environments significantly influence the nanozymes’ activity in addition to the active center.  相似文献   
93.
Organic single crystals (OSCs) with excellent flexibility and unique optical properties are of great importance due to their broad applicability in optical/optoelectronic devices and sensors. Nevertheless, fabricating flexible OSCs with room-temperature phosphorescence (RTP) remains a great challenge. Herein, we propose a host–guest doping strategy to achieve both RTP and flexibility of OSCs. The single-stranded crystal is highly bendable upon external force application and can immediately return to its original straight shape after removal of the stress, impressively emitting bright deep-red phosphorescence. The theoretical and experimental results demonstrate that the bright RTP arises from Förster resonance energy transfer (FRET) from the triphenylene molecules to the dopants. This strategy is both conceptually and synthetically simple and offers a universal approach for the preparation of flexible OSCs with RTP.  相似文献   
94.
Polycyclic aromatic hydrocarbons (PAHs) with a one-dimensional (1D), ribbon-like structure have the potential to serve as both model compounds for corresponding graphene nanoribbons (GNRs) and as materials for optoelectronics applications. However, synthesizing molecules of this type with extended π-conjugation presents a significant challenge. In this study, we present a straightforward synthetic method for a series of bis-peri-dinaphtho-rylene molecules, wherein the peri-positions of perylene, quaterrylene, and hexarylene are fused with naphtho-units. These molecules were efficiently synthesized primarily through intramolecular or intermolecular radical coupling of in situ generated organic radical species. Their structures were confirmed using X-ray crystallographic analysis, which also revealed a slightly bent geometry due to the incorporation of a cyclopentadiene ring at the bay regions of the rylene backbones. Bond lengh analysis and theoretical calculations indicate that their electronic structures resemble pyrenacenes more than quinoidal rylenes. That is, the aromatic sextets are predominantly localized along the long axis of the skeletones. As the chain length increases, these molecules exhibit enhanced electronic absorption with a bathochromic shift, and multiple amphoteric redox waves. This study introduces a novel synthetic approach for generating 1D extended PAHs and GNRs, along with their structure-dependent electronic properties.  相似文献   
95.
Core-shell photoanodes have shown great potential for photoelectrochemical (PEC) water oxidation. However, the construction of a high-quality interface between the core and shell, as well as a highly catalytic surface, remains a challenge. Herein, guided by computation, we present a BiVO4 photoanode coated with ZnCoFe polyphthalocyanine using pyrazine as a coordination agent. The bidirectional axial coordination of pyrazine plays a dual role by facilitating intimate interfacial contact between BiVO4 and ZnCoFe polyphthalocyanine, as well as regulating the electron density and spin configuration of metal sites in ZnCoFe phthalocyanine, thereby promoting the potential-limiting step of *OOH desorption. The resulting photoanode displayed a high photocurrent density of 5.7±0.1 mA cm−2 at 1.23 VRHE. This study introduces a new approach for constructing core–shell photoanodes, and uncovers the key role of pyrazine axial coordination in modulating the catalytic activity of metal phthalocyanine.  相似文献   
96.
Despite metal-based photosensitizers showing great potential in photodynamic therapy for tumor treatment, the application of the photosensitizers is intrinsically limited by their poor cancer-targeting properties. Herein, we reported a metal-based photosensitizer-bacteria hybrid, Ir-HEcN , via covalent labeling of an iridium(III) photosensitizer to the surface of genetically engineered bacteria. Due to its intrinsic self-propelled motility and hypoxia tropism, Ir-HEcN selectively targets and penetrates deeply into tumor tissues. Importantly, Ir-HEcN is capable of inducing pyroptosis and immunogenic cell death of tumor cells under irradiation, thereby remarkably evoking anti-tumor innate and adaptive immune responses in vivo and leading to the regression of solid tumors via combinational photodynamic therapy and immunotherapy. To the best of our knowledge, Ir-HEcN is the first metal complex decorated bacteria for enhanced photodynamic immunotherapy.  相似文献   
97.
Ascorbate (H2A) is a well-known antioxidant to protect cellular components from free radical damage and has also emerged as a pro-oxidant in cancer therapies. However, such “contradictory” mechanisms underlying H2A oxidation are not well understood. Herein, we report Fe leaching during catalytic H2A oxidation using an Fe−N−C nanozyme as a ferritin mimic and its influence on the selectivity of the oxygen reduction reaction (ORR). Owing to the heterogeneity, the Fe-Nx sites in Fe−N−C primarily catalyzed H2A oxidation and 4 e ORR via an iron-oxo intermediate. Nonetheless, trace O2 produced by marginal N−C sites through 2 e ORR accumulated and attacked Fe-Nx sites, leading to the linear leakage of unstable Fe ions up to 420 ppb when the H2A concentration increased to 2 mM. As a result, a substantial fraction (ca. 40 %) of the N−C sites on Fe−N−C were activated, and a new 2+2 e ORR path was finally enabled, along with Fenton-type H2A oxidation. Consequently, after Fe ions diffused into the bulk solution, the ORR at the N−C sites stopped at H2O2 production, which was the origin of the pro-oxidant effect of H2A.  相似文献   
98.
Chiral inorganic superstructures have received considerable interest due to the chiral communication between inorganic compounds and chiral organic additives. However, the demanding fabrication and complex multilevel structure seriously hinder the understanding of chiral transfer and self-assembly mechanisms. Herein, we use chiral CuO superstructures as a model system to study the formation process of hierarchical chiral structures. Based on a simple and mild synthesis route, the time-resolved morphology and the in situ chirality evolution could be easily followed. The morphology evolution of the chiral superstructure involves hierarchical assembly, including primary nanoparticles, intermediate bundles, and superstructure at different growth stages. Successive redshifts and enhancements of the CD signal support chiral transfer from the surface penicillamine to the inorganic superstructure. Full-field electro-dynamical simulations reproduced the structural chirality and allowed us to predict its modulation. This work opens the door to a large family of chiral inorganic materials where chiral molecule-guided self-assembly can be specifically designed to follow a bottom-up chiral transfer pathway.  相似文献   
99.
An unprecedented Pd-catalyzed fluorinative bifunctionalization of aziridines and azetidines was successfully developed via regioselective C−C and C−F bond cleavage of gem-difluorocyclopropanes, leading to various β,β′-bisfluorinated amines and β,γ-bisfluorinated amines. This reaction was achieved by incorporating a 2-fluorinated allyl group and a fluorine atom scissored from gem-difluorocyclopropane in 100 % atom economy for the first time. The mechanistic investigations indicated that the reaction underwent amine attacking 2-fluorinated allyl palladium complex to generate η2-coordinated N-allyl aziridine followed by fluoride ligand transfer affording the final β- and γ-fluorinated amines.  相似文献   
100.
Perovskite nanocrystals (PeNCs) deliver size- and composition-tunable luminescence of high efficiency and color purity in the visible range. However, attaining efficient electroluminescence (EL) in the near-infrared (NIR) region from PeNCs is challenging, limiting their potential applications. Here we demonstrate a highly efficient NIR light-emitting diode (LED) by doping ytterbium ions into a PeNCs host (Yb3+ : PeNCs), extending the EL wavelengths toward 1000 nm, which is achieved through a direct sensitization of Yb3+ ions by the PeNC host. Efficient quantum-cutting processes enable high photoluminescence quantum yields (PLQYs) of up to 126 % from the Yb3+ : PeNCs. Through halide-composition engineering and surface passivation to improve both PLQY and charge-transport balance, we demonstrate an efficient NIR LED with a peak external quantum efficiency of 7.7 % at a central wavelength of 990 nm, representing the most efficient perovskite-based LEDs with emission wavelengths beyond 850 nm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号